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Ordering and short-time orientational diffusion in dipolar hard-spherical colloids
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Orientational hydrodynamic functions and short-time, self-orientational and collective orientational diffusion
coefficients of dipolar hard-spherical colloids are performed on a homogeneous isotropic phase, as functions of
the wave vectog, for various values of the volume fraction and the dipolar strength of the macroparticles. The
calculation is based on the dynamic orientational structure factor, which is the time-dependent self-correlation
of the orientation density. We assume that the time evolution of the orientation density is given by the
Smoluchoswki’s equation, taking into account the hydrodynamic interactions as well as the dipolar interaction.
The former are considered assuming pairwise additivity. The importance of the dynamic orientational structure
factor is that its initial slope can be measured in a depolarized light scattering experiment. The results predict
a different behavior for dilute and for dense dipolar colloids. The ordering phenomena are studied via the
ordering coefficients, which are the orientational hydrodynamic functiogs-&. The results show that as the
dipolar colloid evolves to the instability line, the translational ordering velocity increases while the rotational
one reduces. The short-time orientational diffusion coefficients=ad are also performed. They predict that
near to the instability line, the dipolar colloid diffuses translationally more than rotationally. At very dilute
concentration the dipolar colloid presents an unexpected dynamical behavior, which seems to indicate that the
colloid could be evolving to a reentrant phase.
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[. INTRODUCTION the dipole momentg8—11. Occasionally, at low concentra-
tion the colloid presents ring aggregates. In paper |, Alarco

Collective relaxation of nonspherical colloids is not asWaess, Diaz-Herrera, and Gil-Villegas predicted that for very
well studied as that for spherical ords-4]. The importance dilute concentrations the dipolar colloid does not evolve into
of the collective relaxation is that it plays a key role in re- an orientationally ordered phase, as the dipolar strength is
laxation processes and also profoundly influences the dyincreased. Nevertheless the richness of the dipolar colloids,
namic behavior in the phase transitids$. The fundamental the effects of the collective translational rotational relaxation
quantity to describe the collective relaxation is the dynamidnto the pretransitional dynamical behavior have not been
structure factofF(q,t), whereq is the magnitude of the wave studied much.
vector. Our purpose in this paper is to describe the collective Up to now, the study of translational rotational dynamical
translational rotational relaxation in dipolar hard-sphericalbehavior of the dipolar fluids has considered the fluctuations
colloids on a homogeneous isotropic phase. In order to carrgf the angular-dependent number density. Bagchi and Chan-
out this study, we use the approach given by AlarWdaess, dra have studied a dipolar liquid using an extended hydrody-
Diaz-Herrera, and Gil-Villegas in a recent papét (hereaf- namic description, where the slow variable is the angular-
ter referred to as)! This approach is based on the positionaldependent number densitfl2]. They found that the
orientational behavior of the static orientational structure facorientational correlations slow down the collective orienta-
tor, which is the static self-correlation of the orientation den-tional relaxation as compared to the single motion, which has
sity fluctuations. important consequences in the pretransitional area near the

In recent years the dipolar hard-spheres model has atsotropic-ordered liquid crystal transition. To compute the
tracted much attention, since besides the fact that dipolamo-particle correlation function Bagchi and Chandra as-
interactions are nearly omnipresent in molecular colloidssumed that they are given by a linearized equilibrium theory.
there are also several artificial systems where the dipoladn the other hand, Herndez-Contrerat al. have com-
interaction plays a dominant roJ&]. The most important are puted the long-time self-diffusion coefficients, translational
the so-called ferrofluids, which are stable colloidal suspenand rotational, as a function of the volume fraction and the
sions, i.e., colloidal iron particles, in a carrier liquid. A char- dipolar strength of the macroparticl¢s3]. Their study is
acteristic of the dipolar interaction is that it alone can breakbased on the generalized Langevin equation approach, ne-
its symmetry and create a rich orientationally ordered colloiglecting the hydrodynamic interactior(§il). In this case,
dal suspension. At sufficiently low temperatures a dense syshese authors consider as important variables the velocity of
tem of dipolar hard spheres can spontaneously order into a dipolar macroparticle and the angular-dependent number
ferroelectric state; however, for dilute systems the macroparensity. To compute the equilibrium pair correlation distribu-
ticles are found to associate into chainlike structures witttion function, Hernadez-Contreraset al. used the mean
near contact of the hard spheres and head-to-tail alignment gpherical approximation. The results obtained by these au-
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thors show that the dipolar interaction leads to a strong suprated by the intervat. In particular,F(q,t) is able to de-
pression of both long-time self-diffusion coefficients, trans-scribe short-time behavior. This domain is defined for times
lational and rotational, compared with the corresponding fresuch thatrg<t<r, where gz is the Brownian relaxation
diffusion coefficient. time, which is the characteristic time for the relaxation of the

The main objective of this paper is to study the short-timetranslational velocity of a colloidal particle, ang is the
dynamical behavior of a dipolar colloid as it evolves into theinteraction time., is defined as the time for a macroparticle
instability line[8]. Following the approach given in paper |, of translational diffusion coefficienID$ to diffuse the dis-
we will study the collective translational rotational relaxation tancea/2. The importance of this approach is that the initial
of the orientation density into the short-time dynamical be-slope ofF(q,t) can be probed in a depolarized light scatter-
havior of the dipolar hard-spherical colloids, on the homogeing experiment, as a function of for very dilute concentra-
neous isotropic phase. As in paper |, the results are paranions[2].
etrized in terms of the refractive index of the scattering Our starting point is the time-dependent self-correlation
mediumng~k. For simplicity, we parametrize the results by Of the orientation density-(q,t) [Eq. (8) in paper |, evalu-
taking ko= 45/2, whereo is the diameter of the colloidal ated att#0]. The orientation density is defined p§]
particle.

In this paper, we focus our attention on the short-time
self-diffusion and collective diffusion, and the orientational
hydrodynamic functions, translational as well as rotational,

of a dipolar colloid. In Sec. Il, we develop a hydrodynamic whereu;(t) andr;(t) are the unit vector in the direction of
description for the dipolar colloid. We use as a slow variablethe dipole and the center of mass of tile macroparticle,
the orientation density. We assume that the dynamical behayespectively. In order to describe the time evolution of
ior of the orientation density is given by Smoluchowski’'s Q(q,t), we assume that the dynamic of the colloid on time
equation, taking into account the HI and direct dipolar inter-scalest> ry is entirely described in terms of a distribution
actions. Following the definition of the self-correlation of the fynction P(rM,QN;t) [14], where rN=(r,, ... ry), QN
orientation density provided in paper |, we provide an ex-— Q4,...,0y), and Q; denotes the polar angles that
pression for the dynamic orientational structure factor. Th%pecify the direction of théth dipole. The equation of mo-

importance of this quantity is that its initial slope is related totjon of P(rN,QN:t) is the generalized Smoluchowski equa-
the short-time collective orientational diffusion coefficients, tjop [2],

whose expressions are provided as a functiogefWe also
provide expressions for the self-orientational diffusion coef- aP(rN,QN:1) N AN N AN

ficients and for the orientational hydrodynamic functions, T:O(r ATPITLQTY, @
translational as well as rotational, as functiongjof In Sec.

l1l, we give our model system and the details for obtainingwhereO(rN,QN) is the Smoluchowski operator, and its ad-
the angle-dependent pair correlation function using the refjoint is given by[15]

erence hypernetted chain equation apprd&NC). In Sec.

IV, we compute the orientational hydrodynamic functions as ~ n. 4 P

a function ofq(#0). Results for several values of the di- O(r~.Q )_; a_ri_ﬂ ar ||
mensionless dipolar strenght ? and volume fractionp are

also provided. In Sec. V, we develop expressions for the
short-time, collective orientational and self-orientational dif-
fusion coefficients, translational and rotational, as functions
of q#0. We also provide results for several valuesydf>  wherel; is the angular gradiant operatdp,=®(rN,QN) is
and ¢ of the dipolar colloids. In Sec. VI, we compute the the potential energy of the colloid, anﬁlj}b= Dﬁb(r’\‘) are the
limit for very small wave vectors of the orientational hydro- microscopic diffusion tensors(b=T,R means translational
dynamic functions and for the short-time orientational diffu-and rotational contributions, respectivelyAssuming pair-
sion coefficients. We interpretate the orientational hydrodywise additivity of the HI, valid for small volume fractions
namic functions atj=0. The results for these quantities are [16], we have

reported as a function gi*? and ¢ of the dipolar colloids.
Finally, in Sec. VII, the concluding remarks are given.

0 0 1 iq-ri(t)
Uj(t)uj(t)_§| ey (1)

1 3
Qan=-g2 3

J
TT TR

+[Li—B(Li®)]

]
DRR.L. +DRT. —“ (3)
R gy

3$=D2 |+; {Ag(rlj)FljF1j+B:(r1j)[| _FljFlj]}

4
Il. THEORETICAL APPROACH
and
According to paper I, we assume that the fundamental o o
quantity to describe the collective translational rotational Di"’}a:Dg{Ai(r”)rijrij+B§(rij)[l—rijrij]}, (5

time-dependent behavior of dipolar colloids is the dynamic

orientational structure factoF(q,t). This quantity is the where A2, B2 and AZ, B2 are the self-mobility and
Fourier transform of the self-correlation of the local orienta-cross-mobility functions, respectively. The solvent appears in
tion density fluctuations occurring at different times, sepa-q.(2) only through th€time-independentiffusion tensors
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D°. In Egs.(4) and(5) D3 are the translational(=T) and Ha(qo)=D3%"""(qo) + HY(qo), (12)
rotational @=R) diffusion coefficients, at infinite dilution. .
Thus, the time development of the orientation density iswhereD3°"°"(qo) are the short-time self-orientational dif-

given by fusion coefficients; the dimensionless translational one is
~ given by
Q(a,t)=e%'Q(q,0). (6)
D'sr’Short(q(T) ¢ ©
In order to obtain a time-dependent expressiorFiea, t) oo =1+ FgJ dxxg(220x)[ 3a(x) +ap(x)]
in terms of the orientational diffusion coefficients, we start T S7J1
with the hydrodynamic description of the colloid. We choose b 5 (e
as our hydrodynamic variables the orientation density and + @\/WJ dxx%g(222x)a,(x)Sr(qo),
the translational and rotational fluxg3;(q,t) andJg(q,t), mJ1
respectively, which are related, in the simplest possible way, (12)
through the continuity equation
and the dimensionless rotational coefficient by
dQ(q,t)
It =—=V1-Jr(q,t) - Vg Jr(qQ,1), (7) D;,short b -
_ . . 50 =1+ Js—ifl dxx2g(220:x)[3b1(X) + by(X)]
whereV , represents the gradients in the Fourier and angular R ™
space, witha=T,R, respectively. The derivation of a model 11¢ 5 (e
for the fluxes is based on the fact that in a dense colloid the + /_3J dxng(222;x)b2(x), (13
relaxations of both spatial and angular orientational fluxes 10 V1477 )4

are very fast and only the orientation density is important on 3 ] ]

the time scale of interegtL2]. At short times, the orienta- Where¢=(m/6)pa”, p is the bulk density, and the func-
tional fluxes are driven by their corresponding gradient in thdions&(x), by(x), andSr(x), with 1=1 and 2, are given in
orientation density of the colloid. For small gradients in thethe Appendix. We must note that the short-time translational
orientation density, the orientational fluxes are linear func-Self-diffusion coefficient depends an through the function

tions of these gradients, which can thus formally be writtenSt(do) [see Eq.(9) in paper 1, while the rotational coeffi-
as cient is independent afg. The distinct parts of the orienta-

tional hydrodynamic functions are also provided; the dimen-
sionless translational one is given by
Ja(q,t)=—f dt'Da(q,t—t")V,-Q(q,t’), €S)

Hf(qo) 3 ¢ [ . T
where the integral kernd,(q,t) will be referred to simply D0 8 = 3H;(qo) +4H(qo) +
as the “orientational diffusion coefficient,” translational and T g
rotational, which are functions of the orientation density. Us-
ing the nonlocal expression for the fluxes, E®), the +2H(qo)
Laplace transform of Eq(7) and the definition of the dy-
namic orientational structure factor, we obtain

F(a,2)=[z+Tr(a)+Tr(@)] *F(a), ©)

whereF (q) is the static orientational structure factor, which @nd the dimensionless rotational function by
was performed in paper |, and the quantitlegq) are the

3
> H3(q0)

Si(qo)—[3H(qo)

+4H£<qa>]sz<qo>], (14)

it HR(ao) 3 ¢ 1
initial slope ofF(q.t), RDo =5 \/?(H?(QG)+H2R(QU)+ E[Hg(qcr)
r )—VZHa(q) (10) ’ R R
(W=Vag(q) +HE(d0)181(qe) + [HE(qo)
We call the orientational hydrodynamic functions to the +HR 15
quantities,H,(q), which are essentially determined by the 6(d0)]S:(qo) ¢, (15

HI, via the microscopic diffusion tensors. It is also important

to stress here thati,(q) are an ensamble average so thatwhere the functiondif'(qo) with 1=1,. .. 6, aregiven in
they also depend on the equilibrium distribution. The impor-terms of the projections of the angle-dependent pair correla-
tance of the orientational hydrodynamic functions can be extion functions, as well as HI. As in the case 6{q,0) the
perimentally checked, since the initial slope and the statiprojections are onlyg(22m;r) with m=0, 2, and 4. The
orientational structure factor can be probed in a depolarizetlinctionsS;(qo), with j=1,2, H{(qo), with a=T,R and

light scattering experiment. b=1,...,6 aregiven in the Appendix.
The orientational hydrodynamic functions versys are The short-time collective orientational diffusion coeffi-
given by cients are given by
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c,short s,short d [ N00F=. ! 3 N
Pa”199) _Ds "10) + |-:)a(q0) (16) ::z LT Mla 0.00624 3286
D? DF(qo) DaF(qo)’ PF sigh] == ** ]+ 0.10000 3.379]
1.081 . K 0.20000 4.035

X S _
wherea=T andR, correspond to the translational and rota- ~ _, "% osel *T.Tie’r 4, 500 2485
tional coefficients, respectively. B 1047 o ]
In summary, our results provide expressions, as functions & 102}’ 2 ';" 5 .

of g, for the short-time self-orientational and collective ori- T 1.00 [=s «Wm
entational diffusion coefficients as well as for the orienta- ogaf|: I ® A
tional hydrodynamic functions. The advantage of these quan- 096l ::..,:; ]
tities is that they can be probed in a depolarized light e

. . . . 0-94 C b4 1 1 1 1 3
scattering experiment. The next step is to compute the inputs 0 10 20 30 20
g(22;r), since a linearized equilibrium theory is unable to -

calculate them; in the following section we provide and dis-

cuss the RHNC approach, which we use for obtaining these FIG. 1. Translational orientational hydrodynamic function as a

projections. function of qo, for the values ofp and the corresponding highest
values ofu*? indicated in the figure.

Ill. MODEL SYSTEM AND RHNC STRUCTURE

The model consists of hard spheres, in a carrier solution, 9(“91'92):;' m%m g(l1l2l;r)C(1 412l mymym)
with an embedded point dipole of strengthat their center, ve e
where the dimensionless dipolar strength is defined.s% XYllml(Ql)Yl
=1/T*, T*=kgTo>/ u?, andkgT is the thermal energy. The

pair potential for molecules 1 and 2, with coordinateswhereC(ll,l;m;m,m) are the Clebsch-Gordan coefficients,

(Q2)Yin(Q0), (2D

2My

(r1,Q4) and 2,€y), is given by g(l41,l;r) are the projections of the pair distribution func-
tions, ), represents the polar angles, which determines the
u(1,2)=uyg(r)+upp(r,Qq,Q5), (17 direction ofr, andY,,() is the spherical harmonic.

where r=[r[=|r,—ry|, uys(r) is the usual hard-sphere |, ORIENTATIONAL HYDRODYNAMIC FUNCTIONS
potential and the dipolar potential is written as

The orientational hydrodynamic functions contain the

u? .. o configuration-averaged effect of the HI on the short-time dy-

Upp(r,€21,05) = T3 [Ug- U= 3(uy-T)(uz-1)]. (18 namics of the dipolar colloid. In case of vanishing HI,

H.(qo)= Dg. To describe the complete behavior of the ori-

entational hydrodynamic functions, we have investigated dif-
ferent regimes ofp at increasingu*?, as functions of the

wave vector §#0). We have defined five regimes and we
g_ave chosen a representative valuegofor each. The fol-

For simplicity we use the notation (12)Xr,Q4,Q,). The
structural information of the dipolar colloid is contained in
the total and direct correlation functiomg1,2) andc(1,2).
On a homogeneous isotropic phase, these correlation fun

tions are calculated by solving the Ornstein-Zernike equatio owing increasing-dipole-strength regimes are considered:

1) the very low with ¢=0.00524;(2) the low with ¢
=0.1 (chainlike regimg (3) the intermediate withp=0.2
h(1,2=c(1,2) + iJ’ d3h(1,3)c(3,2), (190  (mixed chainlike and ferroelectric regime4) the high with
Am ¢=0.35 (ferroelectric regimg and (5) the very high with

¢=0.45 (ferroelectric regimg We have paid special atten-

combined with the exact relation between(1,2), tion to the very low regime, since it is the window in which

h(1,2), c(1,2), and the bridge functioB(1,2), the depolarized light scattering experiments can be per-
formed, and in paper | an unexpected behavior was found.
1+h(1,2=exd —Bu(1,2+h(1,2—c(1,2+B(1,2]. In Fig. 1, we have plotted the translational orientational

(20 hydrodynamic function versugo for each volume fraction
and a value of the dipolar strength. Th&? chosen, for each

In this work we use the RHNC approadB,17], where ¢, corresponds to the closest value to where the RHNC fail
B(1,2) is approximated by the Verlet-Weiss expression of theéo have a solution. These values have already been obtained
underlying hard-sphere fluid. The solution of EQ9) is by Klapp and Fortsmanf8], except for the very low regime.
given in terms of projections of the angular-dependent paiThey show that by increasing, from very high to low, the
correlation functiong(r,Q4,Q,)=h(r,Q4,Q,)+1, which dipolar colloid reaches the instability line, which can be con-
are the coefficients of an expansion on a spherical invariargidered as the stability limit of the homogeneous isotropic
basis. Two different expansions are widely used dependinghase. However, it is important to stress here that the RHNC
on the choice of the reference frarh5]; we just use the predictions overestimate the temperatures when compared
laboratory one, which is given by with the computer simulation values. From Fig. 1, we
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0.00524 3.286 ] 1.05
0.10000 3.379 |
0.20000 4.035 A
0.35000 3.990 ] 1.00
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e e— = ek b »  0.00524 3.286
1 £ 090f B o7 LR + 0.10000 3.379
] & I AR IN 4 0.20000 4.035
] [ ompaart T Treags | v 0.35000 3.990
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FIG. 2. Rotational orientational hydrodynamic function as a .
(s

function of qo, for the values of$ and the corresponding highest

o § '
values ofu™“ indicated in the figure. FIG. 3. Translational short-time collective orientational diffu-

sion vsqo for different volume fractions and their corresponding

observe that the main peak is a minimum. In the inset, it cafighest value of dipolar strength, as indicated in the figure.
be seen that the depth of the minimum increases witmtil
¢=0.35, while for¢=0.45 the depth does not increase, butincreased. We have considered it unnecessary to show them.
decreases. In Fig. 2 we have plotted the rotational orienta-
tional hydrodynamic function versugo, for each ¢ and
w*? of the regimes defined. Contrary to the translational
function, here the main peak is a maximum. We observe that In this section, we describe the behavior of the short-time
the height of the peak increases from the very low to thecollective orientational and self-orientational diffusion coef-
intermediate, while for h|gh and very h|gh regimes the pea“‘iCients as functions qua:#O. For the self-orientational
decreases, as can be seen in the inset. case, we only consider the translational coefficient, since the

This different dynamical structural information requires arotational is independent ofo. In order to analyze the short-
detailed Study, which will not be given here. Neverthe|essltime orientational diffusion coefficients, we have also con-
we can say that this dynamical structural information couldsidered the five regimes defined in the preceding section. In
be related to the presence of different phases_ Consequent’g,{g. 3, we have plotted the translational short-time collective
the orientational hydrodynamic functions present a differen@rientational diffusion coefficient, as function ofo, for
behavior for dilute and dense dipolar colloids, in agreemengache andu*?. In this figure, we observe that for very large
with previous result$6,8]. The precise value at which the do the coefficient goes te-1. The height of the main maxi-
dipolar colloid changes its behavior occurs for the translamum increases witlp until ¢=0.2 and then the peak de-
tional function in¢=0.338 and for the rotational one i creases a@ is increased, as it can be seen in the inset. In the
=0.275. These values were obtained at incrementd ¢f  next plot, Fig. 4, we have now plotted the rotational short-
=0.0125. We have analyzed for other valuesdgfbut no  time collective orientational diffusion coefficient, as a func-
different behavior was found. Comparing Figs. 1 and 2, we
can observe that at very larggethe translational function
goes to 1 for all concentrations, while the rotational function
goes to different values, depending on the concentration.

We can conclude that the HI produces a different behavior
for dilute and dense dipolar colloids, in both orientational =.* I
hydrodynamic functions. Nevertheless, we must note that the>6 1.00

V. SHORT-TIME ORIENTATIONAL DIFFUSION

1.15 T T T T T T T T

1.10

1.05H. " .

change in the translational and rotational behavior occurs a & [’ %10 . -
different concentrations. The translational response of the di 095 * v = ¢ ho T
polar colloid requires a higher concentration to change its® « | poc = 000524 3.266
. o 090 3 .y ¢ 0.10000 3.379

tendency than the rotational. N 1050 "« " | . 020000 4.035

We focus our attention on the very low regime, since it is 085} .. .i,; v 0.35000 3.990
the window in which the experiments, using depolarized - Y esmeele | ¢ 0.45000 2.463
light scattering, can be performed; and according to paper | 080§ 10025 =
in this regime the dipolar colloid exhibits an unexpected be- 0 1'0 22 2'06 3'0 4'0
havior. In order to analyze this regime, we have also plotted qo

the orientational hydrodynamic functions for eight concen-
trations, from ¢=0.00262 to 0.0875. Unfortunately we

mum and the height of the maximum always increase &s

. > FIG. 4. Rotational short-time collective orientational diffusion
could not observe any change, that is, the depth of the miniversusqo for different volume fractions and their corresponding
highest value of dipolar strength, as indicated in the figure.
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tion of qo, for each¢ and w* 2. This coefficient presents the limit the generalized velocities, translational and rotational,
same behavior of the translational coefficient. The mairwill be only given by the angular gradient . We define
maximum also increases untgl=0.2. The precise value in the “ordering velocities” as

¢ in which the peak increases is for the translational until

¢=0.2125 and for the rotational untip=0.275. As in the V() =M3(g=01)Vo- —0t 23
case of the orientational hydrodynamic functions, these val- a(t (G=0DVr-Q(G=0D. @3

ues were found at increments Afp=0.0125. From the re- ) . o
sults (Figs. 3 and % due to the HI, it is observed that the ~ Therefore, if we interpret as an external ordering field to

peak of the rotational coefficient is more enhanced than théhe angular gradient d, then ordering will be the phenom-
translational. enon that dipolar colloidal particles attain certain ordering

We have also plotted the translational short-time self-velocities, translational as well as rotational, under the action
orientational diffusion coefficient as a function q&-. It is ~ Of this external ordering field. The ordering coefficients are
almost constant witkjo, the effect of HI is longer for dense the ratio of the ordering velocities, of a dipolar macroparticle
dipolar colloids, and it is never longer thzm?. We have N Fhe collqld, to their values at infinity dllutpn. These c;oef—
considered it unnecessary to show here. ficients evidently depend o# and u of the _dlpolar collo_ld, _

The short-time orientational diffusion coefficients were SO that a measurement may be used for its characterization.
also studied in the very low regime. But nothing is learned " Order to calculate the ordering coefficients, we assume
from them, so we have also considered it unnecessary 47 weak.mhomogenemes, i.e., the onentanonal fluxes are
show them. From the results given in the preceding sectiofVen by Fick's law, so Eq(8) has the simplest form
and in this section, we can observe that the orientational
hydrodynamic functions as well as the short-time orienta- Ja(q,t)=—Dy_Va-Q(a.1), (24)
tional diffusion coefficients are very sensible at very small
go. In the following section we focus our study on analyzing

this observed feature. whereDy_is the gradient orientational diffusion, which de-
scribes the transport of colloidal particles in an orientation
VI. TRANSLATIONAL AND ROTATIONAL ORDER density with a constant gradient. For very small wave vectors

(large wavelengths the short-time collective orientational

According to paper |, thelo—0 limit becomes the ori- itrsion coefficients are equal to the corresponding gradient
entation density in the ordering tensor. Consequently, in thig ;o niational diffusion coefficients

section the dynamical properties of a dipolar colloid are dis-

cussed taking only into account the orientations of the mac- ) "

roparticles. It is important to mention that the positional in- Dy, =limy_oD5*""[Q(q,1)]. (29
formation of the macroparticles is also given through the

angular-dependent pair correlation function. We focus our We consider a “Gedanken experiment” in which we as-

attention on the collect_|ve orlgntatlonal behavior n the O""sume a state in which the gradients in orientation density
entational hydrodynamic functions and the short-time orien-

tational diffusion coefficients. To carry out this study, we compensate for an ordering external figlg. To counterbal-

. , . 7 ; ance the orientational diffusion fluxes, E(®4), with the
C\?gep:;/sosgggz??;t?gntt?;f“tlg :ﬁglr\?:r?llﬂoevcnree%ilgge:ir:\c/é itcorresponding fluxes driven by the ordering external field,
shows an unexpected behaviiét. In the first subsection, we given by
interpretate the— 0 limit of H,(qo=0). We also describe
the behavior oH,(qo=0) as a function ofp and u of the Jo,(a,) =M Q(a)]Q(a,1)Eq (), (26)
macroparticles. In the second subsection, the description of
the short-time orientational diffusion coefficientsqat=0 is

given, as a function of and u*> the “ordering mobilities” M29 Q(qg)] must be proportional

to the corresponding gradient orientational diffusion coeffi-

cients. As a consequence of this, the orientational hydrody-
namic functions will be proportional to the corresponding

The generalized velocity of colloidal material is propor- ordering mobilities atqg=0. Therefore, we obtain for the

A. Ordering coefficients

tional to the total generalized force, that is, short-time regime the ordering velocities
(VT(q,t) (MTT[Q(q,t)]MTR[Q(q,t)] o
= Y =
V(@) | MRTQ(A,DIMRRQ(q.)] g 00 @)
v
dI[Q(q,1)] e :
Vrin[Qa.Y l—5 77
dQ(a,t) |, (22 0 . . . . o
wherev ;4 is the ordering velocity for an isolated particle in
Vr-Q(q,t) 2

the same solvent.
where M2 Q(q,t)] are the mobility functions and From Egs.(14) and (15) , the g—0 limit is, for the di-
I1[Q(q,t)] is the osmotic pressure]. Thus, in theq—0 mensionless translational ordering coefficient,
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FIG. 5. Translational ordering coefficient as a functiongofor FIG. 6. Rotational ordering coefficient as a function¢gdffor the
the isotherm indicated in the figure. isotherm indicated in the figure.
Hr(qo=0) D$"°"(qo=0) sequence of HI and of the dipolar interaction. From Figs. 5
DO - DO and 6, we observe that when the dipolar colloid evolves into
T T

the instability line, it presents a different behavior for dilute
¢ [3(= and dense states. For the latter, the slope of the coefficients
+ = Ef dxxg(220x) increases dramatically near of the instability line, while for
V57 ! dilute the slope reverses its sign and suffers a fast enlarge-
ment. The only difference, near the instability line, is that the

23 ifxdquzzz;x)Jr foodxxz[AT(X) translational coefficient enlarges while the rotational reduces.
4 14)1 1 ¢ This behavior indicates that the translational ordering veloc-
ity enlarges, while the rotational one reduces, near the insta-
2 (= bility line.
T w) T
+2B;(x)]9(220x) J1a)s X Ac(x) The physical picture is, if the dipolar colloid evolves into
the instability line, then the loss of rotational ordering veloc-
. ity resulting from the tendency to align is offset by the gain
—Bc(x)]9(222)) ¢, (28) in translational ordering velocity. It is important to mention
that a similar behavior has been seen by Onsager in rods, he
and for the dimensionless rotational coefficient, showed that as the concentration is increased, the rods; tend

to align along a preferred direction, so in this nematic phase

_ s,short - the loss of rotational entropy resulting from the aligment is
Hr(qo=0) Dg ) R . X .

o = ot [6[ dxx[AX(X) offset by the gain in translational entrof#8]. In conclusion,

Dr Dr Vo7 1 we see that the behavior of the ordering coefficients, near the

instability line, could be due to the presence of an orienta-

+ZBCR(X)]g(220;X)—3\EJ’deXZ[ACR(x) tionally or(jered phase. This resu!t is expec'ged, t_)ecau_se we

7)1 are analyzing the response of a dipolar colloid to its orienta-

tional behavior, and this shows the tendency to lose its ori-

_pR i entational symmetry. Thus, the ordering coefficients could be
BC(X)]g(ZZZ’X)]’ (29 very important near an orientationally ordered phase.

In the next plots we show the ordering coefficients, as a
whereA!, Bl , A}, andBY are the cross-mobility functions, function of u*?, for each¢ of the regimes previously de-
which are given in the Appendix. fined. For each plot, the maximun value f 2 corresponds

In Figs. 5 and 6, we show the ordering coefficients, as d@o the closest point in which the RHNC fail to have a solu-
function of ¢, for the isotherm T*=0.286 [=(u*?  tion. In Fig. 7 we have plotted the translational ordering
=3.5)"1]. Each value ofp, the highest and the lowest, cor- coefficient, while in the Fig. 8 that corresponding to the ro-
responds to the closest point in which the RHNC fail to havetational ordering is plotted. In both figures, we observe that,
a solution. We have chosen this isotherm since it has twéor intermediate values ofu*?, the ordering coefficients
points on the instability lin¢6,8], for the low and high value present the monotonic behavior discussed, which means that
of ¢. These figures show that, for intermediate valuegpf the dipolar colloid is far away from the instability line.
the ordering coefficients present a monotonic behavior a¥vhile, for high values ofu*?2, we observe that fromp
functions of the concentration. The translational coefficient=0.45 to 0.1, the ordering coefficients present the behavior
increases while the rotational one decreases. That is, if thereviously discussed in Figs. 5 and 6. Consequently the di-
concentration is increased the translational ordering velocitypolar colloid approaches the stability limit of the homoge-
becomes greater while the rotational one decreases, as a careous isotropic phadé,8]. For ¢=0.1, near the instability
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2 FIG. 9. Translational ordering coefficients as functionsuéf
for the different concentrations as indicated in the figure.
FIG. 7. Translational ordering coefficients as functiongudf ] ] ) ]
for the representative values in concentration for the five regimesgimes. In the first subregime fap higher than 0.0524, the
dipolar colloid evolves into the instability line. For the sec-
line, we observe that the ordering coefficients enlarge sud®nd subregime for concentrations betwegrr0.0209 and
denly their slope. This indicates that in the low regime the0-0524, the dipolar colloid presents a suspicious behavior—
transition from the disordered to the ordered phase is obtaifl® translational ordering resembles the behavior of an or-
able in a progressive and continuous way, but near the inst&lered phase, while the rotational ordering resembles a no
bility line, a very rapid increment for the rotational is ob- ordered phase. In the third subregime for concentrations
served while for the translational a very rapid reduction islower than¢=0.0209, the dipolar colloid does not evolve
observed. A different behavior presents the very low regimdnto an orientationally or_dered phase. The roFatlonaI ordgrmg
(¢=0.00524). The ordering coefficients first present the needs more concentration than the translational ordering to
slope observed as if the dipolar colloid evolved the instabil-8V0lve into an orientationally ordered phase. For the third
ity line, but near this line they suddenly invert and enlargeSubregime, the ordering coefficients as a functionusf
their slope. This unexpected behavior is in agreement witfirst presents a slope as if the dipolar colloid evolved into the
the results found for static properties in paper I. As can pdnstability line, put near the transition, they suddenly mver;
seen in the inset of Figs. 5 and 6, the very low regime isand enlarge their slope. Thus, we see that the results predict
characterized by a too small increment in its rotational orderthat the phase reached in the third subregime may be a reen-
ing velocity, while the translational one presents a very smalffant phase, which is characterized by a no global orienta-

reduction. tional order, in agreement with the prediction in paper .
We focus our attention on the very low regime, in order to
analyze the characteristics observed. We have plotted, in B. Short-time orientational diffusion

Figs. 9 and 10, the ordering coefficients as a_furjctiop’b? In this subsection, we describe the short-time orientational
for high values, from)=0.002 62 to 0.0875 with increments it,sion of a dipolar colloid, taking into account only the

of A¢p=0.0125. The results show that there are three SUbredrdering tensor fluctuations. From E6), in the very small
wave vector limit, the short-time self-orientational and col-

T T lective orientational diffusion coefficients can be obtained, as
1000F & & sssssaed] :
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0gool ¢ T v . AL e —~— e !
- v -
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FIG. 8. Rotational ordering coefficients as functionsudf for FIG. 10. Rotational ordering coefficients as functiongéf for

the representative values in concentration for the five regimes. the different concentrations as indicated in the figure.
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into the instability line. We again consider the isothefh

FIG. 13. Translational short-time self-orientational diffusion as
functions of ¢ and u* 2 As in the case of the ordering co- 2 function of u*2 for the representative values of each regime, as
efficients, we begin by analyzing the behavior of the colloid,indicated in the figure aq=0.
via the short-time orientational diffusion, for when it evolves

coefficients reduce when the dipolar colloid approaches the

=0.286 = (*2=3.5)"1], which has two points on the in- insta_bi!ity line. In both figureg11 and 12, the rota_tional
coefficients are more suppressed than the translational ones,

stability line.

In Figs. 11 and 12, we have plotted the translational andgpecially near the instability line. Thus, near an orientation-
rotational short-time, self-orientational and collective orien-ally ordered phasénstability line) a dipolar colloid is more
tational diffusion coefficients respectively. From these fig-"estricted to diffuse rotationally than translationally.

ures, we can observe that, for intermediate values othe
four coefficients reduce monotonically as functions ¢f
The HI effect is more pronounced for collective than for

self-diffusion. In both short-time, self-orientational and col- ©"€
lective orientational diffusion, the rotational is more sup-©acC _ _ : _ _
pressed than the translational. This behavior is already exg/0Se€st point at which the RHNC fail to have a solution. As is
pected, since it is a consequence of the combined effects #fdicated in each figure, they show the results for the trans-
the HI and the dipolar interaction. From Figs. 11 and 12, WeIatlonal and rotational short-time, self-orientational, and col-

can also observe that all the coefficients present a differer] ¢ ' '
behavior for dilute and dense concentrations near the instd@W. We find that for intermediate values

Proceeding with the analysis, we study the short-time ori-
entational diffusion coefficients in the five regimes defined in
the Sec. IV. In Figs. 13-16, we have plotted the short-time
ntational diffusion coefficients, as functions @f 2, for
h regime. The maximun value pf 2, for each, is the

gctive orientational diffusion coefficients. From very high to
@i*2, all the

bility line. For the latter, when the dipolar colloid evolves short-time orientational diffusion coefficients reduce mono-
into the instability line, the slope of the coefficients enlargegionically as functions ofs. While, if the dipolar colloid ap-

very fast. For dilute, the situation, observed near the instaProaches the instability line it enlarges its slope, as is ex-
bility line, is that the slope inverts its sign and enlarges, adected, according to the behavior presented near the insta-
can be seen in the inset of each figure. Consequently, all the
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FIG. 12. Short-time collective orientational diffusion as function
of ¢ for the isotherm indicated in the figure @t 0. Translational

and rotational.

indicated in the figure ag=0.
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FIG. 15. Translational short-time collective orientational diffu- . L
sion as a function ofu*? for the representative values of each Ponent than for the rotational one, for evolving into an or-
regime, as indicated in the figure @& 0. dered phaséinstability line). However, from the collective
coefficients, the concentration needed is the same for both

bility line. For the low regime, the plots show that for all the components, translational and rotational.
coefficients its slope reduces, but near the instability line the
reduction suddenly is larger; this behavior is also observed in VIl. CONCLUDING REMARKS
the ordering coefficients. For the very low regime a different  \ye have studied the short-time orientational diffusion and
behavior is also observed in the Figs. 13-16. For each coefne ordering phenomenon of a dipolar hard-spherical colloid
ficient its slope is first reduced with* 2, but near the insta- iy an homogeneous isotropic phase. The study was based on
bility line it is invert and suffers a small enlargement. Thesetne time-dependent fluctuational effects of the dynamic ori-
results are in agreement with that found for the orderingaptational structure factor, which is the self-correlation of the
coefficients and the results for static properties found in pagientation density, for short times. The time evolution of the
per I. ) ] dynamic orientational structure factor is given by Smolu-
We have analyzed for more concentrations in the very lowchowski's equation, taking into account the HI and dipolar
regime from¢=0.002 62 to 0.0875. As is observed in Figs. interactions. The former was considered assuming pairwise
17-20, the results predict a similar behavior that describedqqitivity. All the quantities were studied as functions of the
coefficients will reach the instability line are: for the self- tne dipolar strength. The results are parametrized by choos-
0.0157, while for the COIIeCtive, both until 0.0209. From the ko=45/2. We have main|y focused our attention on the evo-
results for the self-coefficients, we can say that the dipolajytion of a dipolar colloid as a function of the dipolar
colloid needs more concentration for the translational comstrength, in order to predict its dynamical pretransitional be-
havior for different concentrations.

T T T T T ™ We have presented results for the translational and rota-
1Lo0% H . "u o] m 0.00524 1 tional short-time, self-orientational, and collective orienta-
095> LI Lo 4 020000 |
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FIG. 16. Rotational short-time collective orientational diffusion
as a function ofu* ? for the representative values of each regime, as  FIG. 18. Rotational short-time self-orientational diffusion as a
indicated in the figure ag=0. function of u*?2 for the values indicated in the figure @& 0.
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1.000 ' efficient decreases due to the loss of orientational symmetry,

oo i“i §§§A %434 $iuwmt while the translational coefficient increases, compensating
0.995 - N A2 22555 . the loss.
o = 08501 o T ’«‘ ] 'Related to the short-time self-orientational and collective-
Q I ¢ & ] orientational diffusion coefficients aj=0, translational as
7 ogss = 000262 . T\ : well as rotational, coefficients reduce when a dipolar colloid
o e 0.00524 . : S .
= A 0.01050 Y approaches the instability line. The HI effect is more pro-
g 09801y 001570 % T nounced for collective than for self-orientational diffusion.
a 0975 K g-ggggg 1 ] Concerning the translational and rotational coefficients, the
L > 0.05240 \ ] latter is more suppressed than the former. Consequently, near
0970 e 008750 | ) T the instability line, the dipolar colloid is more restricted to
1.0 15 2.0 25 3.0 35 being diffuse rotationally than translationally, due to the
w2 alignment.

Our results predict the dynamical behavior at short times,
FIG. 19. Translational short-time collective orientational diffu- near the instability line, from very high to low concentra-
sion as a function ofu*? for the values indicated in the figure at tions. In the low regime, the approximation to the instability
q=0. line is obtained in a progressive way, but near the line sud-
denly the dipolar colloid tends to align quickly. Our main
tional diffusion coefficients, as a function of the wave vector.prediction is that in the very low regime the dipolar colloid
We have divided the analysis into five regimes, from verymay have a reentrant phase. For concentrations lower than
low to very high concentrations. All the coefficients were ¢=0.0209, the dipolar colloid behaves as if it will evolve
plotted as a function of the wave vector, for fixed valuegof into the instability line, but near the transition it changes its
andu* 2. The latter was chosen as the closest point where theehavior, coming back to a phase with no global orienta-
RHNC equations fail to have a solution. The results showtional order. These results are in agreement with the predic-
that the dipolar colloid has a different behavior for dilute andtions for the static case, presented in paper I. The relevance
dense concentrations. For the same regimes, we have alsbthe results performed for the very low regime case is that
studied the orientational hydrodynamic functions, as a functhey can be measured in a depolarized light scattering experi-
tion of the wave vector. The results also show that the dipolament. A direct comparison with experiments is anticipated in
colloid presents a different behavior for dilute and denseorder to test the validity of the conclusions given in this
concentrations. paper.
The study of the ordering phenomenon has been per-
formed via t_he orderi_n_g coefficients, Wh_ic_h are proportio_nal ACKNOWLEDGMENT
to the ordering velocities, and the coefficients are the orien-
tational hydrodynamic functions gt=0. These ordering ve- This work was supported by funds from CONACYT,
locities cause the dipolar colloid to lose some positionalMexico, Grant No. 28239 E.
and/or orientational symmetries. Our results show that if a
dipolar colloid evolves into the instability line, the transla- APPENDIX
tional ordering coefficient increases while the rotational one
reduces. The physical picture is that the loss of rotational We give the functions that appear in E¢$2) and (13):
ordering velocity resulting from the tendency to align is off-
set by the gain in translational ordering velocity. Conse- 17 1 5 1 141 1

- age - B . _ — _ _ _1
guently, near the instability line, the rotational ordering co- a;(x) 10245° 1024;g+ 16384X10+O(X 2,
T T T . T L2 T (Al)
1-00[ . iﬁ‘ lAA S35 n pmpgpmn® T
O N f”*iiiiii‘:ﬁ?’ ] _ 151 1051 3731 1385 1
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FIG. 20. Rotational short-time collective orientational diffusion
as a function ofu*2 for the values indicated in the figure 0. +0(x 1|, (A4)
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We give the functions that appear in Eq$4) and (15):
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J14
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1 J5 ¢

1
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X{Be(X)Fag(yX) +[Ac(X) =B (X)]GaoyX)}

8
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1 3
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T 1 3 .
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E GGzl(yX) 5 3—5H40(yx)
Vit 2
—27\/ =G4o(yX) + —=FF 5(yX
35 20(YX) 2\/? 42YX)
2 R
- ;GG41(yX)

)= | dxesgoo

\/—Goo(yx)

+0g(224:x)

} , (A15)

3 R
3 79(222;X)GGzz(yX)

+ i@1(224;x>Gfoz(yx> : (A16)

ﬁ
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HE(y) = flxdxe[AE*(x)—B?(x)][g(zzzm
2 R 3 R

-3 7K20(YX)+2 7KK22(yx)

\/§ R \/§ R

- 7LL22(yx)+3 7'—'—23()’)()
2 R R 3 R

9 \&K4o(yX) +GGyy(yx)+ EKK@(yX)
2 R 2 R

+ 7LL42(yX)+3 7|—L43(yx)

} , (A17)

X

+0g(224:x)

X

2 R
+ ELL4§(yx)

3
3 \/;g(ZZZ;X)Gegz(yx)

HE(y)=— fdxszE(x)

: (A18)

8 R
+ —79(224;X)GG42(YX)

N
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HR(y)=— ffdxxﬁAE(x)—BE(x)]l 9(222x)
3 3

2 \@KKZ‘g(yx)— \[7LL§3<yx>
3

- \/;LLEE(YX)

3 R 2 R 2 R

X

+0g(224:x)

G GEE( yX)

2 R
+ ELL43(yx) , (A19)
AR(x)= % %+0(x*13), (A20)
R 11 -9
Bc(x)=—1—6x—g+0(x ). (A21)

We do not give the explicit expressions for the undefined
functions in the last equations, those that appear in the ori-
because nothing is
learned from them. They are provided from the authors by

entational hydrodynamic functions,

request.
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